EPOXIDATION OF OLEFINS BY OXAZIRIDINES

Franklin A. Davis*, Nadia F. Abdul-Malik, Sami B. Awad and Mark E. Harakal Department of Chemistry, Drexel University, Philadelphia, PA. 19104

<u>Abstract</u>: The first examples of the epoxidation of olefins by oxaziridines, 2-benzenesulfonyl-3-aryloxaziridines (<u>la-b</u>) is described.

Studies of model systems that mimic the behavior of the oxygenases have contributed much to our fundamental understanding of these complex oxygen-transfer reactions.¹ For the flavin dependent mono-oxygenases it is generally agreed that the active site is a reduced flavin co-factor.² The structure of the active site, however remains controversial, with flavin hydroperoxides,³ flavin carbonyl oxides⁴ and flavin oxaziridines⁵ being proposed.

Oxidation of sulfides to sulfoxides, olefin epoxidation and the hydroxylation of aromatic hydrocarbons results on photolysis of heteroaromatic N-oxides.⁶ The similarity in oxygen-transfer selectivities for this reagent system and for enzyme catalyzed oxidations has made the photolysis of heteroaromatic N-oxides a useful model system (bio-mimetic) for studying enzyme oxygen-transfer reactions. Oxaziridines are believed to be formed by photolysis of heteroaromatic N-oxides.⁷ A transition state involving an oxaziridine was proposed by Boyd and co-workers for the oxidation of sulfides to sulfoxides by this system.⁸ This datum was based, in part on the similarities in oxygen-transfer stereoselectivities between their system and stable oxaziridines such as 2-benzenesulfonyl-3-phenyloxaziridine (1a).⁹ Since precedents were lacking for the epoxidation of olefins by oxaziridines, no conclusions could be reached on the possible involvement of these species in the epoxidation of olefins by heteroaromatic N-oxides.⁸

2-Arenesulfonyl-3-aryloxaziridines (1) are a new class of selective, aprotic, oxygentransfer reagents capable of oxidizing sulfides to sulfoxides,¹⁰ amines to amine oxides¹¹ and organometallic reagents to alcohols and phenols.¹² We report here the epoxidation of olefins by these oxaziridines, la-b, in good yield. Olefin epoxidation by 1 is carried out by heating a two-fold excess of the olefin with the oxaziridine at 60° C in CHCl₃. Products were identified by comparision with authentic samples of the reaction mixtures (Table). These epoxides can be separated from the sulfonimine, 2, by extraction into n-pentane and further purified by preparative TLC or by distillation.

The oxidation of sulfides by <u>1</u> is complete in less than a minute at ambient temperature.¹⁰ Olefin epoxidation by <u>la-b</u> is considerably slower. For example, trans-stilbene was epoxidized by <u>1b</u>, 25 percent at 25° C after 7 days and 95 percent at 60° C for 12 hr. (entry 14). Electron rich olefins are epoxidized faster than electron-poor olefins by <u>la-b</u>. Compare, for example, the epoxidization of 1-octene with 2-methyl-1-hexene (entries 4 and 5).

The fact that cis-stilbene gives a 72 percent yield of cis-stilbene oxide (entry 16) with 1b suggests that the epoxidation of olefins by la-b involves a stereospecific syn-addition of oxygen to the C-C double bond. Oxaziridine la, which is thermally less stable than 1b, gave both cis and trans-stilbene oxides with cis-stilbene (entry 15). One of the products of the thermal ring-opening of oxaziridines, which competes with olefin epoxidation in the case of la, is benzenesulfonic acid.¹³ Under the reaction conditions benzenesulfonic acid isomerizes cis-stilbene to trans-stilbene.¹⁴ The latter is also detected (GLC, TLC, NMR) in the epoxidation of cis-stilbene by la. Note that while indene with la gives both indene oxide and 2indanone (entry 9) with 1b only indene oxide is obtained (entry 10).¹⁵ In general yields are also better with the more thermally stable oxaziridine 1b (Table).

Boyd et. al. proposed a non-concerted transition state for the epoxidation of olefins in the photolysis of pyridine N-oxide because both cis and trans epoxides were obtained.⁸ Thus the stereospecificity of the epoxidation of olefins by 1 may be interpreted to mean that oxaziridine intermediates are not involved in the epoxidation of olefins by photolysis of heteroaromatic N-oxides. Nevertheless our results demonstrate that a suitably activated oxaziridine can transfer its oxygen atom to the same substrates as do enzyme systems. Studies of the oxygen-transfer reactions of oxaziridines should prove useful in evaluating their involvement in enzyme catalysed oxidations.

Currently we are exploring the scope of the epoxidation of olefins by 2-arenesulfonyl-3-aryloxaziridines (1).

<u>Acknowledgement</u>: Financial support from the donors of the Petroleum Research Fund, administered by the American Chemical Society, and the National Science Foundation is greatfully acknowledged.

Entry	Oxaziridine ^a	Olefin	Products	(% yield)	Unreacted oxaziridine(%)
1 2 3	1 <u>a</u> 1b 1 <u>b</u> (72 hr)	~~~/	~~~ \	N.R. N.R. (42) ^c	85 100
4 5	la Ib	\sim		(50) (77)	8
6	la Ž	\bigcirc	\bigcirc	(81)	
7	1b	\bigcirc		(95)	
8	lb ~	PhCH=CH ₂	PhCH CH ₂	(74) (50) ^d	
9 10	la 1b ∼			► (10) [°] ()	20
11 12 13 14	la Îb Îb Îb (12 hr)	$Ph_{H} c = c < Ph_{Ph}$	Phane C C Ph	(36) (30) ^d (23) (47) (95) (70) ^d	60 42
15	$\overset{1a}{\sim}$	Ph $C = C$ Ph	Phan C C Ph	(27)(36) ^f	
16	1 b	H	H	(72)(1) ^f	
17	la ~	Ph $C = C$ H	Ph C C C	(41)	30
18	1b (12 hr)	H Me	H Me	(80)(70) ^a	
19	<u>l</u> b	$_{\rm H}^{\rm Ph}$ c = c $_{\rm CH_2OH}^{\rm Ph}$	Phone C C Ph	(63)(30) ^c	

Table :	Epoxidation	of Olefin 3 hr)	s by	2-Arenesulfonyl-3-aryloxaziridines	(1a-d)	in	CHC13
	(al 00 6 / .	J III./.					

a) Ratio of oxaziridine to olefin was 1:2 unless otherwise noted. b) NMR yields using the internal standard method unless otherwise noted and based upon the oxaziridine. c) GLC analysis using a 6 ft. 3 % OV-17 on Anakrom Q 90/100 mesh column. The analyses were determined by comparison of peak areas with standard solutions of the reaction products. d) Isolated yields. e) Ratio of 1b to trans-stilbene was 1:1. f) Yield of trans-stilbene oxide.

References

- 1. For a review on bio-mimetic oxygenation, see: T. Matsuura, Tetrahedron, 33, 2869 (1977).
- 2. V. Massey and P. Hemmerich, The Enzymes, 12, 191 (1976).
- 3. For leading references, see: A. Miller and T.C. Bruice, <u>J.C.S. Chem. Commun</u>., 896 (1979) and T.C. Bruice, <u>Accts. Chem. Res.</u>, <u>13</u>, 256 (1980).
- G.A. Hamilton in "Molecular Mechanisms of Oxygen Activation," ed. O. Hayaishi, Academic Press, New York, 1974, Chapter 10; R.E. Kaey and G.A. Hamilton, <u>J. Am. Chem. Soc.</u>, <u>97</u>, 6876 (1975).
- H.W. Orf and D. Dolphin, <u>Proc. Nat. Acad. Sci., U.S.A.</u>, <u>71</u>, 2646 (1974): W.H. Rastetter, T.R. Gadek, J.P. Tane and J.W. Frost, <u>J. Am. Chem. Soc.</u>, <u>101</u>, 2228 (1979): D. Vargo and M.S. Jorns, <u>ibid.</u>, <u>101</u>, 7623 (1979).
- J.W. Daly, D.M. Jerina and B. Witkop, <u>Experientia</u>, <u>28</u>, 1129 (1972); P.G. Sammes, G. Serra-Errante and A.C. Tinker, <u>J.C.S. Perkin 1</u>, 853 (1978); ibid., 1736 (1979).
- G.A. Spence, E.C. Taylor and O. Buchardt, <u>Chem. Rev., 70</u>, 231 (1970); S. Yamada and C. Kaneko, <u>Tetrahedron Lett.</u>, 1273 (1979); K. Tokomura, M. Itoh and C. Kaneko, Tetrahedron Lett., 2027 (1979).
- 8. M.N. Akhtar, D.R. Boyd, J.D. Neill and D.M. Jerina, J.C.S. Perkin I, 1693 (1980).
- F.A. Davis, J. Lamendola, Jr., U.K. Nadir, E.W. Kluger, T.C. Sedergran, T.W. Panunto, R. Billmers, R. Jenkins, Jr., I.J. Turchi, W.H. Watson, J.S. Chen and M. Kimura, J. Am. Chem. Soc., 102, 2000 (1980).
- F.A. Davis, R. Jenkins, Jr., and S.G. Yocklovich, <u>Tetrahedron Lett.</u>, 5171 (1978);
 F.A. Davis, R. Jenkins, Jr., S.Q.A. Rizvi and T.W. Panunto, <u>J.C.S. Chem. Commun.</u>, 600 (1979).
- 11. R.L. Billmers, unpublished results.
- F.A. Davis, P.A. Mancinelli and K. Balasubraminian and U.K. Nadir, <u>J. Am. Chem. Soc.</u>, <u>101</u>, 1044 (1979).
- 13. F.A. Davis, U.K. Nadir and E.W. Kluger, J.C.S. Chem. Commun., 25 (1977).
- 14. Heating cis-stilbene, 1.0 mmoles with 0.01 mmoles of benzenesulfonic acid for 3 hr. at 60°C gave a 25% yield of trans-stilbene.
- The Lewis acid catalyzed isomerization of indene oxide to 2-indanone has been reported: see A. Balsamo, G. Berti, P. Crotti, M. Ferretti, B. Machia and F. Macchi, <u>J. Org. Chem.</u>, <u>39</u>, 2596 (1974).

A 13% yield of 2-indanone was obtained on heating indene oxide with a trace of benzene-sulfonic acid for 3 hr. at 60° C in CHCl₂.

(Received in USA 26 November 1980)